Tennessee Statewide Model (TSM) V4

Model Overview

Nagendra Dhakar, PhD

November 17, 2021
Model Overview - Summary

- TN statewide model (TSM) history
- TSM version 4 framework
- Assignment validation
- Model development data
- Demand model components
- Assignment and feedback loop (optional)
- Connected and autonomous vehicle (CAV) model
- Questions and answers (Q&A)
Tennessee Statewide Model (TSM) History
Phase 1: Data Development

• New Network & Zone System
 – 3x network and zones
 – 2040 socioeconomic forecasts

• Truck GPS data from ATRI
 – Cleaned and expanded

• Combined TN HH Surveys
 – reweighted
Phase 2: Interim Model

- Cleaned traffic counts
- Interim model
 - Simple three-step trip-based model
 - Data driven pivoting from ATRI & LEHD
- Post-processor
Phase 3: Freight and Long-Distance Modeling

BUILD ON SUCCESSES AND CAPITALIZE ON OPPORTUNITIES

- **New Commodity Flow Freight Model**
 - To make ATRI-based trucks sensitive
- **Advanced trip-based model** to replace 3-step
 - Mode & Destination choice models, linked NHB trips
 - New AirSage+ATRI-based pivot point
- **Incorporate New National Long-Distance Model**
 - Calibrate to **AirSage**
 - Successful use in Chattanooga
 - Successful use for intercity corridors
Phase 4: TSM4

Additions

- a simple long-distance passenger model and visitor model
- Connected and autonomous vehicle (CAV) framework
- Option for travel time feedback loop
- Use of 2018 rMerge passive data

Updates

- Base year 2018 (SE, network)
- Future and interim year SE data forecasts to 2045
- 2018 truck ATRI data
- Peak periods to 3 periods TOD assignment
- Simplification of rJourney model
- Other model updates (usability, transit and walk variables, post-processor, and pivot methodology)
TSM4 Framework
TSM4 Framework

INPUTS

Networks
SE Data

DEMAND MODELS

Short Distance Passenger Demand
Long Distance Passenger Demand
Freight & Truck Demand

ASSIGNMENT

Runtime – 4.5 hours (with time-of-day assignment)

Machine - 24 physical cores and 256 GB RAM
TSM4 GUI
Assignment Validation
Validation Statistics – All Vehicles

- Model is performing well
- Require looking into big outliers
- Possible issue with traffic counts

Figure 74: Modeled Volumes Versus Counts (All Vehicles)
Validation Statistics - Trucks

- Model is performing well
- Require looking into big outliers
- Possible issue with traffic counts

FIGURE 75: MODELED TRUCK VOLUMES VERSUS TRUCK COUNTS
Model vs Targets – Volume Group

FIGURE 73: PIVOTTED MODEL ERROR VERSUS RMSE STANDARDS
Model Validation – Facility Class

- Freeways and arterials are doing well
- Lower facility class are performing relatively poor

<table>
<thead>
<tr>
<th>Class</th>
<th>Stations</th>
<th>Error (%)</th>
<th>MAPE (%)</th>
<th>RMSE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>735</td>
<td>9.05</td>
<td>15.76</td>
<td>14.68</td>
</tr>
<tr>
<td>Arterials</td>
<td>5,252</td>
<td>-3.03</td>
<td>42.11</td>
<td>38.05</td>
</tr>
<tr>
<td>Collectors</td>
<td>4,455</td>
<td>-13.49</td>
<td>67.62</td>
<td>86.77</td>
</tr>
<tr>
<td>Local</td>
<td>96</td>
<td>-41.91</td>
<td>98.89</td>
<td>124.53</td>
</tr>
</tbody>
</table>
Validation - Comparison with Other SW Models

- Doing similar or better compared to most statewide models

<table>
<thead>
<tr>
<th>Daily Volume Range</th>
<th>AL</th>
<th>AZ</th>
<th>FL</th>
<th>IN</th>
<th>OH</th>
<th>TX</th>
<th>UT</th>
<th>WI</th>
<th>TSM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5,000</td>
<td>141.8</td>
<td>103.6</td>
<td>60.9</td>
<td>70.7</td>
<td>124.0</td>
<td>190.0</td>
<td>102.0</td>
<td>61.2</td>
<td>89.6</td>
</tr>
<tr>
<td>5,000 - 10,000</td>
<td>80.7</td>
<td>56.9</td>
<td>43.4</td>
<td>39.2</td>
<td>43.5</td>
<td>70.0</td>
<td>64.5</td>
<td>32.0</td>
<td>44.0</td>
</tr>
<tr>
<td>10,000 - 20,000</td>
<td>74.0</td>
<td>36.7</td>
<td>32.7</td>
<td>33.5</td>
<td>33.0</td>
<td>61.0</td>
<td>57.5</td>
<td>22.3</td>
<td>29.2</td>
</tr>
<tr>
<td>20,000 - 30,000</td>
<td>57.1</td>
<td>27.5</td>
<td>25.9</td>
<td>29.3</td>
<td>27.0</td>
<td>40.0</td>
<td>45.0</td>
<td>19.3</td>
<td>24.6</td>
</tr>
<tr>
<td>30,000 - 40,000</td>
<td>36.2</td>
<td></td>
<td>21.4</td>
<td>21.9</td>
<td>24.0</td>
<td></td>
<td>36.0</td>
<td>13.6</td>
<td>19.6</td>
</tr>
<tr>
<td>40,000 - 50,000</td>
<td></td>
<td></td>
<td>14.9</td>
<td>14.8</td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
</tr>
<tr>
<td>50,000 - 60,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>> 60,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.9</td>
</tr>
<tr>
<td>Total</td>
<td>82.2</td>
<td>56.0</td>
<td>32.6</td>
<td>39.4</td>
<td>47.7</td>
<td>90.0</td>
<td>49.0</td>
<td>39.2</td>
<td>39.8</td>
</tr>
</tbody>
</table>
Model Development Data
Data

- Zone system
- Network
- Socio-economic (SE) data
- Household travel surveys
- LBS OD data (rMerge RSG)
- AirSage Cellular data
- LEHD LODES commute flow data
- Transearch commodity flow data
- ATRI truck GPS data
- Traffic count database (MS2)
Model Zones – Network Centroids

Assignment Zones (3,687)
skimming and assignment

Transearch Zones (668)
freight model skimming

NUMA Zones (4,442)
LD model skimming

FAF Zones (123)
not used
Socio-Economic (SE) Data – Zone Layer

• SE data for 2018 (base year), 2025, 2035, and 2045 (horizon year)
 – Households, population, employment by 2-digit NAICS, densities, and accessibilities
 – College enrollment and total park area

• Two steps development process
 – County level control totals
 – TAZ suballocation

• Intermediate years (2025 and 2035)
SE Data - Demographics Data Sources

2014-18 ACS 5-year Estimates
• SE data at Census block
• For comparison and checks in 2018 base year model development

Center for Business and Economic Research (CBER)
• 2018-2070 County level population for TN only from University of TN
• Used for both 2018 and 2045 control totals

Woods & Poole (W&P)
• Purchased 2019 data including demographic variables
• Used for both 2018 and 2045 control totals

MPOs
• Total population estimate at MPO TAZ level
SE Data - Employment Data Sources

Woods & Poole (W&P)
- Purchased 2019 data including employment forecasts consistent with BEA
- Used for both 2018 and 2045 control totals

Infogroup
- Purchased 2018 data for all Tennessee
- Individual business with lat, long locations based on phone surveys, aggregated data

Bureau of Economic Analysis (BEA)
- Freely available federal data
- **Total** employment by NAICS category at County level

MPOs
- Total employment estimate at MPO TAZ level
- Not full two-digit NAICS breakouts
SE Data - Control Totals (TN Statewide)

<table>
<thead>
<tr>
<th>Model Year</th>
<th>2018</th>
<th>2025</th>
<th>2035</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>6,767,031</td>
<td>7,252,726</td>
<td>7,549,323</td>
<td>8,484,522</td>
</tr>
<tr>
<td>Household Population</td>
<td>6,625,204</td>
<td>7,102,861</td>
<td>7,396,100</td>
<td>8,317,388</td>
</tr>
<tr>
<td>Group Quarter Population</td>
<td>140,741</td>
<td>147,914</td>
<td>151,158</td>
<td>165,442</td>
</tr>
<tr>
<td>Households</td>
<td>2,568,000</td>
<td>2,748,533</td>
<td>2,857,245</td>
<td>2,933,717</td>
</tr>
<tr>
<td>Household Size</td>
<td>2.63</td>
<td>2.79</td>
<td>2.89</td>
<td>2.88</td>
</tr>
<tr>
<td>Household Income</td>
<td>70,033</td>
<td>75,004</td>
<td>78,045</td>
<td>80,301</td>
</tr>
<tr>
<td>Household Workers</td>
<td>1.13</td>
<td>1.21</td>
<td>1.25</td>
<td>1.29</td>
</tr>
<tr>
<td>Household Vehicles</td>
<td>1.96</td>
<td>2.09</td>
<td>2.15</td>
<td>2.20</td>
</tr>
<tr>
<td>Household with Seniors</td>
<td>718,142</td>
<td>763,067</td>
<td>787,848</td>
<td>804,315</td>
</tr>
<tr>
<td>University Enrollment</td>
<td>417,575</td>
<td>446,088</td>
<td>461,680</td>
<td>471,437</td>
</tr>
<tr>
<td>Employment</td>
<td>3,912,084</td>
<td>4,201,555</td>
<td>4,382,881</td>
<td>5,215,818</td>
</tr>
</tbody>
</table>

Bold numbers are averages
ATRI Truck GPS Dataset

ATRI DATA SAMPLE FOR TENNESSEE

- Four 2-week samples over 2018 (Q3 and Q4) and 2019 (Q1 and Q2) quarters
- 536,000 unique trucks with 4.95 million trips
- Sample rate of 10%
- Processed and expanded to weekday classification counts
rMerge OD Passive Data

- Location-based services (LBS) or smartphone application data – April 2019
- Data expansion
 - Demographics and employment data (Census)
 - Traffic counts

TABLE 66: LBS DATA STATISTICS

<table>
<thead>
<tr>
<th>Metric</th>
<th>April 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Sightings</td>
<td>2,887,085,416</td>
</tr>
<tr>
<td>Total Devices</td>
<td>3,142,777</td>
</tr>
<tr>
<td>Resident Devices</td>
<td>469,900</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>6.8%</td>
</tr>
<tr>
<td>Visitor Devices</td>
<td>616,049</td>
</tr>
<tr>
<td>Removed Devices</td>
<td>2,056,828</td>
</tr>
<tr>
<td>Clusters</td>
<td>13,503,003</td>
</tr>
<tr>
<td>Trips</td>
<td>58,240,979</td>
</tr>
</tbody>
</table>
Demand Model Components
TSM4 Framework

INPUTS

Networks

SE Data

DEMAND MODELS

Short Distance Passenger Demand

Long Distance Passenger Demand

Freight & Truck Demand

ASSIGNMENT
Short Distance (SD) Demand Models

- Advanced trip-based model
 - NHB models are conditionally on HB models
 - Destination choice models & semi-aggregate discrete regression models
Long Distance (LD) Models

• Passenger trips over 50 miles
• TN residents, non-residents, and visitors
• Two long-distance models
 – New LD and visitor model (TSM4) – default configuration
 – FHWA national LD model ‘rJourney’ (TSM3)
New Long-Distance and Visitor Model - Summary

- Used LBS smartphone data
 - Resident\non-resident – one trip end within 50miles of home
 - Visitor – both trip ends are far (>50miles) from home
- Visitor model
 - Visitor trips can be shorter (SD) and longer (LD) than 50miles
 - Visitor model trips based on the long-distance model
- Both models output vehicle trips so no mode choice model required
Freight and Truck Demand Model

Inputs
- Networks
- SE Data

Demand Models
- Short Distance Passenger Demand
- Long Distance Passenger Demand
- Freight & Truck Demand

Assignment

Freight & Truck Demand
- 1a. Commodity Generation
- 1b. SU Truck Trip Generation
- 2a. Commodity Distribution
- 2b. SU Truck Trip Distribution
- 3. Freight Mode Split
- 4. Truck Pivoting
- 5. Truck Time-of-Day
Assignment and Feedback Loop (Optional)
Assignment

- Multi-class user equilibrium for three time periods (AM, PM, and OP)
- Tri-Conjugate Frank-Wolfe (TCFW)
- Relative gap of 0.0001
- Two options
 - SOV and HOV assignment
 - Commodity assignment
Create Trip Tables by Time Period and User Class

<table>
<thead>
<tr>
<th>OTAZ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>901</td>
<td>1027</td>
<td>179</td>
<td>742</td>
<td>1562</td>
<td>436</td>
<td>171</td>
<td>174</td>
<td>246</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>172</td>
<td>568</td>
<td>107</td>
<td>454</td>
<td>820</td>
<td>143</td>
<td>63</td>
<td>64</td>
<td>43</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>592</td>
<td>1673</td>
<td>825</td>
<td>2734</td>
<td>4161</td>
<td>965</td>
<td>455</td>
<td>570</td>
<td>231</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>234</td>
<td>1001</td>
<td>440</td>
<td>3018</td>
<td>5006</td>
<td>1081</td>
<td>523</td>
<td>488</td>
<td>132</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>442</td>
<td>162</td>
<td>1208</td>
<td>5140</td>
<td>720</td>
<td>260</td>
<td>176</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>126</td>
<td>345</td>
<td>173</td>
<td>900</td>
<td>3343</td>
<td>2525</td>
<td>977</td>
<td>331</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>356</td>
<td>209</td>
<td>1329</td>
<td>3023</td>
<td>2997</td>
<td>1761</td>
<td>396</td>
<td>48</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>370</td>
<td>261</td>
<td>1242</td>
<td>1977</td>
<td>688</td>
<td>346</td>
<td>771</td>
<td>62</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>1370</td>
<td>1890</td>
<td>622</td>
<td>1349</td>
<td>2297</td>
<td>850</td>
<td>382</td>
<td>370</td>
<td>935</td>
<td>459</td>
</tr>
<tr>
<td>10</td>
<td>1323</td>
<td>2394</td>
<td>497</td>
<td>1091</td>
<td>1409</td>
<td>894</td>
<td>397</td>
<td>271</td>
<td>838</td>
<td>2203</td>
</tr>
</tbody>
</table>

Create Skims by Time Period and Mode

<table>
<thead>
<tr>
<th>OTAZ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.94</td>
<td>3.40</td>
<td>5.38</td>
<td>6.03</td>
<td>6.54</td>
<td>7.61</td>
<td>8.77</td>
<td>8.09</td>
<td>3.55</td>
<td>5.73</td>
</tr>
<tr>
<td>2</td>
<td>3.81</td>
<td>1.89</td>
<td>3.68</td>
<td>4.26</td>
<td>5.25</td>
<td>7.78</td>
<td>8.54</td>
<td>7.87</td>
<td>5.64</td>
<td>7.87</td>
</tr>
<tr>
<td>3</td>
<td>4.82</td>
<td>3.41</td>
<td>2.12</td>
<td>3.51</td>
<td>5.04</td>
<td>6.69</td>
<td>7.28</td>
<td>5.96</td>
<td>5.26</td>
<td>7.72</td>
</tr>
<tr>
<td>4</td>
<td>6.69</td>
<td>4.02</td>
<td>3.11</td>
<td>2.18</td>
<td>3.47</td>
<td>5.36</td>
<td>5.87</td>
<td>5.46</td>
<td>6.00</td>
<td>8.42</td>
</tr>
<tr>
<td>5</td>
<td>8.98</td>
<td>5.52</td>
<td>5.19</td>
<td>4.03</td>
<td>2.33</td>
<td>5.59</td>
<td>7.00</td>
<td>7.57</td>
<td>9.37</td>
<td>10.62</td>
</tr>
<tr>
<td>6</td>
<td>8.44</td>
<td>7.15</td>
<td>5.86</td>
<td>5.81</td>
<td>4.58</td>
<td>2.55</td>
<td>3.78</td>
<td>6.50</td>
<td>8.85</td>
<td>10.31</td>
</tr>
<tr>
<td>7</td>
<td>12.40</td>
<td>9.30</td>
<td>7.53</td>
<td>6.88</td>
<td>7.15</td>
<td>5.02</td>
<td>4.24</td>
<td>8.20</td>
<td>11.16</td>
<td>11.78</td>
</tr>
<tr>
<td>8</td>
<td>11.44</td>
<td>7.69</td>
<td>5.35</td>
<td>5.58</td>
<td>6.95</td>
<td>7.35</td>
<td>7.74</td>
<td>4.65</td>
<td>8.91</td>
<td>10.08</td>
</tr>
<tr>
<td>9</td>
<td>5.53</td>
<td>6.35</td>
<td>6.35</td>
<td>8.98</td>
<td>10.13</td>
<td>10.34</td>
<td>11.07</td>
<td>10.55</td>
<td>4.25</td>
<td>5.90</td>
</tr>
</tbody>
</table>

Skim Feedback

- **Demand Models**
- **Feedback**
- **Create Trip Tables by Time Period and User Class**
- **Create Skims by Time Period and Mode**
- **Network Assignment**
Feedback Loop

• Re-running demand models with assignment congested travel times
• Method of Successive Average (MSA) – feedback volume and time
• Base year model reached convergence after 3 iterations
• RMSE increased by 5.5%
Connected and Autonomous Vehicles (CAV)
How can trip-based models be USEFUL in planning for CAVs?

Scenario Planning
- Structured way for organizations to think about the future using a limited number of scenarios (e.g., best case, worst case, most likely, etc.)

Exploratory Modeling Analysis (EMA)
- Simultaneously vary input assumptions across a wide range of future scenarios along key dimensions of uncertainty
- Explore potential outcomes, find critical input assumptions, and identify future policy directions likely to be robust in the face of “deep uncertainty”
Framework

• Optional within the TSM4 model
• By default, not active
 – Activate in user interface
 – CAV parameters are in “cavparams.dbf”
Deadheading / ZOVs

• Types of ZOV trips
 – Private CAVs
 • for car sharing among household members (1)
 • to avoid paid parking
 – by parking at home (2)
 – by parking elsewhere (3)
 – by circulating instead of parking (4)
 – Shared CAVs
 • for passenger pick-up/drop-off (5)
 • to/from depots (6)
 (for re-charging / demand response)
Assignment

• Multi-class equilibrium
• Five assignment classes
 – ZOV
 – Auto CAV
 – Auto Conventional
 – SUT
 – MUT
• Dedicated CAV-only facilities/lanes with higher capacities or speeds
Questions?