

Scenario Modeling and EMA for CAVs

Vince Bernardin, PhD February 28, 2019

"All models are wrong, but some are useful."

- George Box, famous statistician

How can models be USEFUL in planning for CAVs?

- Scenario Planning
 - structured way for organizations to think about the future using a limited number of scenarios (e.g., best case, worst case, most likely, etc.)
- Exploratory Modeling Analysis (EMA)
 - simultaneously vary input assumptions across a wide range of future scenarios along key dimensions of uncertainty
 - to explore potential outcomes, find critical input assumptions, and identify future policy directions likely to be robust in the face of "deep uncertainty"

Jacksonville EMA Study

- Combined ABM-DTA model
- "loose coupling" via skims

Validation of Dynamic Skims

Dynamic versus static

Static Skims (SOV)

Outlier review

Model Runtime Performance

- Windows machines with 12 cores
 - TransModeler DTA: 5 9 AM, 25 iterations \rightarrow 24 hours
 - DaySim ABM \rightarrow 45 min
 - DaySim using AM dynamic skims + transpose for PM peak and static assignment for midday and night periods
 - Ran 3 to 5 feedback loops
 - Transit skims held constant
- Runtimes limited the number of EMA runs that could be done

CAV Enhancements to Daysim

- Auto ownership model includes choice between conventional and autonomous private vehicles
- The "paid rideshare" (TNC) mode added to mode choice
- TNCs can be specified to use AVs
- AV passengers can have lower disutility of travel time
- Use separate auto skim matrices for AVs
- ZOV Trips NOT included

CAV Enhancements to TransModeler

- Aspects of Driving Behavior Identified for Adaptation
 - Acceleration/deceleration
 - Car following headways
 - Choice of travel speed
 - Gap acceptance in lane changing
- Vehicle and Driving Behavior Assumptions
 - Removal of the random/human element from aspects controlled by the vehicle
 - Aspects deterministic, predictable, homogeneous

Experimental Design

SCENARIO	PRIVATE AV ADOPTION	SHARED AV ADOPTION	RESERVED AV CAPACITY	AUTOMATION LEVEL	
BB-N0	None	None	None	None	
MM–L3	Medium	Medium	Interstate left lanes	Level 3	
MM-AC	Medium	Medium	None	Level 3 + ACC	
MM-LC	Medium	Medium	Interstate left lanes	Level 3 + ACC	
MM–IC	Medium	Medium	Interstate all lanes (only inside the I 295 ring road)	Level 3 + ACC	
LH–L3	Low	High	Interstate left lanes	Level 3	
LH–AC	Low	High	None	Level 3 + ACC	
LH-LC	Low	High	Interstate left lanes	Level 3 + ACC	
LH–IC	Low	High	Interstate all lanes (only inside the I 295 ring road)	Level 3 + ACC	
HL-L3	High	Low	Interstate left lanes	Level 3	
HL-AC	High	Low	None	Level 3 + ACC	
HL-LC	High	Low	Interstate left lanes	Level 3 + ACC	
HL–IC	High	Low	Interstate all lanes (only inside the I 295 ring road)	Level 3 + ACC	
HH–L3	High	High	Interstate left lanes	Level 3	
HH–AC	High	High	None	Level 3 + ACC	
HH–LC	High	High	Interstate left lanes	Level 3 + ACC	
HH–IC	High	High	Interstate all lanes (only inside the I 295 ring road)	Level 3 + ACC	

• SAE 3 +/- CACC

- Adoption
 - High
 - Medium
 - Low
 - None
- Split of Private vs.
 Shared
- CAV only lanes / freeways

Scenarios

Shared Ride Mode Share

LM

LH

70%

60%

Vehicle Ownership – Breakout

Percent of private vehicles that are AVs

Percent of private vehicles that are AVs by total household commuting travel time per day

AM VMT, by Vehicle Type and Scenario

DTA Vehicle-Hours of Delay, by Scenario

Regression Model on ABM Output: Total VMT (millions), by Scenario / Time Period / Vehicle Type

Vehicle Type	Non-AV	Non-AV	Private AV	Private AV	Shared AV	Shared AV	All types	All types
Variables	Coeff.	T-stat	Coeff.	T-stat	Coeff.	T-stat	Coeff.	T-stat
Constant	0.262	11.1	0.443	10.6	0.226	12.9	0.931	117.6
Demand - High Private, Low Shared	-0.174	-9.8	0.346	11.0	-0.103	-7.8	0.068	11.4
Demand - Low Private, High Shared	0.116	6.5	-0.281	-8.9	0.108	8.1	-0.057	-9.6
Demand - High Private, High Shared	-0.190	-10.6	0.083	2.6	0.113	8.5	0.006	1.1
Supply - Network scenario AC	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.0
Supply - Network scenario IC	-0.002	-0.1	-0.002	-0.1	0.000	0.0	-0.004	-0.7
Supply - Network scenario LC	0.000	0.0	0.000	0.0	0.000	0.0	0.000	0.1
Arrive Period - 5:00 to 5:29	-0.182	-7.2	-0.434	-9.7	-0.237	-12.7	-0.853	-100.7
Arrive Period - 5:30 to 5:59	-0.177	-7.0	-0.422	-9.5	-0.231	-12.3	-0.830	-98.1
Arrive Period - 6:00 to 6:29	-0.051	-2.0	-0.109	-2.5	-0.075	-4.0	-0.235	-27.8
Arrive Period - 6:30 to 6:59	-0.057	-2.3	-0.125	-2.8	-0.081	-4.3	-0.263	-31.1
Arrive Period - 7:00 to 7:29	0.035	1.4	0.107	2.4	0.051	2.7	0.192	22.7
Arrive Period - 7:30 to 7:59	0.008	0.3	0.042	0.9	0.026	1.4	0.076	9.0
Arrive Period - 8:30 to 8:59	-0.017	-0.7	-0.048	-1.1	-0.018	-1.0	-0.083	-9.8

EMA Summary

- Assumptions
 - Level 3
 - No ZOVs
 - AM peak only
 - Uncertainty in levels of private and shared CAVs, dedicated lanes

Results

- Delay varied from -14% to +28%
- Private CAVs increased VMT
- Shared CAVs decreased VMT
- Specific technology assumptions had different delay implications
- Dedicated left lane almost as good as dedicating all freeway lanes

How-To: Model Impacts of Connected and Autonomous/Automated Vehicles (CAVs) and Ride-Hailing with an Activity-Based Model (ABM) and Dynamic Traffic Assignment (DTA)—An Experiment

A Trip-Based Framework for CAVs

The New Michigan Statewide Model

- One of the longest traditions of statewide modeling in the country since early 1970's
- Last major update was mid 1990's
- New model complete near the end of 2018
 - Data-driven approach using AirSage & ATRI
 - Advanced trip-based passenger modeling
 - Linkage of HB & NHB, LD and Visitor trips
 - Commodity-flow based freight modeling
 - Summer model

CAVs in Michigan

- Home of the Auto Industry
 - All auto-makers actively investing in CAV technology
- Public-Private Partnerships
 - Research rapidly moving into reality
 - U of M has been using autonomous shuttles for almost a year

CAVs in Trip-Based Models

- Lots of off-model / manual analysis
- Michigan, Illinois statewide models
- New factors / market segments + ZOV step

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for
- Autonomous Cars and Trucks in Mixed Traffic

CAVs in Trip-Based MPO Models

- Lots of off-model
 / manual analysis
- Adapted Michigan framework
- Charleston, Charlottesville, & Ann Arbor MPOs

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- **Ext Diurnal Distributions**
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Model Segmentation

- Vehicle Ownership
 - No vehicles
 - Vehicles < Adults</p>
 - Without CAV
 - With CAV
 - Vehicles \geq Adults
 - Without CAV
 - With CAV

- Non-Work Activities segmented by DURATION
 - Less than 30 min (won't send vehicle home)
 - Greater than 30 min (might send vehicle home)

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Auto Ownership

- Subdivide HH autos into conventional and CAV by income
- Decrease overall ownership

"Maybe I can buy a self driving car, and hire it out to Uber to make the payments."

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Trip Generation

 Scale up trips to represent induced demand

Source: Jalopnik.com

- Largest increases to households with:
 - Disabled
 - Seniors
 - Children
- More long distance / external trips from reduced lodging cost?
- [Also, careful of trip rates by vehicle ownership]

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Trip Distribution

- Passengers may be willing to travel farther since time in CAVs can be used positively for working, relaxing, sleeping, etc.
- User can factor down traveler sensitivity to travel time / impedance

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Mode Choice

- Add Taxi / TNC mode
- Decrease cost &
- Vary occupancy

Source: Futurism.com

Mode Choice

- Add MaaS mode
- Add CAV / Conventional Submodes
- User specified shares for all modes or only new

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Long-Distance & Trucks

Source: theautofuture.com

 Long distance travelers may use sleeping hours to travel

- There may be more long distance (external) trips as the cost of travel is reduced
- Trucks / long distance travelers may shift to nighttime hours to avoid congestion

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Deadheading / ZOVs

- Types of ZOV trips
 - Private CAVs
 - for car sharing among household members (1)
 - to avoid paid parking
 - by parking at home (2)
 - by parking elsewhere (3)
 - by circulating instead of parking (4)
 - Shared CAVs
 - for passenger pick-up/drop-off (5)
 - to/from depots (6) (for re-charging / demand response)

Source: driverlesstransportation.com

Private CAV ZOV Modeling Methods

- 1. for car sharing among household members
 - invert asserted percentage of Os & Ds, gravity model
- 2. to avoid paid parking by parking at home
 - invert asserted percentage of HB trip ODs for pay TAZs
- 3. to avoid paid parking by parking elsewhere
 - create trips between pay TAZ & nearest non-pay TAZs as a function of long Ds at pay TAZ
- 4. to avoid paid parking by circulating instead of parking
 - after assignment, factor up volumes on non-freeway links within buffer of pay TAZ based on short stops

Shared CAV ZOV Modeling Methods

- 5. for passenger pick-up/drop-off
 - invert all passenger Os & Ds; gravity model
- 6. to/from depots (for re-charging / demand response)
 - assert depot TAZs with capacities; generate trips by min(difference in demand between periods, charging requirement assumption); gravity between shared CAV Os & Ds and depot TAZ

RESIDENT INTERNAL PASSENGER TRIPS

AUTO OWNERSHIP

- Overall Ownership Level
- Split of Vehicles between CAV vs. Conventional

INDUCED TRIPS

 Adjust Trip Rates by Seniors, Children, Autos

DESTINATION CHOICE

 Adjust Trip Lengths by CAV ownership

MODE CHOICE

- Add MaaS modes
- Add CAV / Conv. Submodes

ZOV GENERATION

- HH CAV to Family
- HH CAV to Home
- HH CAV to Free Parking
- HH CAV to Circulate
- MaaS CAV to Next Pickup
- MaaS CAV to Depot

EXTERNAL AND TRUCK TRIPS

INDUCED TRIPS

- EE & EI/IE Scaling Factors
- SUT Scaling Factor
- MUT Scaling Factor

TIME OF DAY

- Ext Diurnal Distributions
- Trk Diurnal Distributions

ASSIGNMENT

- Autonomous Vehicle Only Lanes / Facilities
- Passenger Car Equivalencies for Autonomous Cars and Trucks in Mixed Traffic

Assignment

- Separate autonomous and conventional vehicle classes
- User option to have dedicated CAV-only facilities/lanes and assert high capacities and higher speeds
- User option to assert different capacity consumption in mixed traffic (through PCE factor)

Scenario Planning Example

Burlington, VT Scenario Planning

- Intended to start a conversation about future transportation and traffic implications of the impending CAV future for LRTP
- Not used in selecting projects
- Two scenarios
 - 80% CAV, 50% shared, base occupancy
 - 100% CAV, 65% shared, higher occupancy

Burlington, VT Scenario Assumptions

- 5% more HBO for induced person trips
- No temporal or destination choice changes
- All ZOV types except intra-household sharing
- Generous increased capacity assumptions
 - Doubling of freeway capacity for 80% scenario
 - Tripling of freeway and 50% increase of arterial capacity for 100% scenario

Burlington, VT Scenario Assumptions

Depot TAZ

Burlington, VT Scenario Results

		CAV (PCE=1.08) CAV (PCE=1)			
	Baseline	80% CAV	100% CAV		
Total VMT	5,407,153	7,257,230	5,778,606		
Total VHT	156,847	230,545	163,905		
VMT/Person	29.5	39.6	31.5		
VHT/Person	0.9	1.3	0.9		
VMT/Person Trip	5.96	6.02	4.53		
VHT/Person Trip	0.24	0.34	0.3		
Total Delay (minutes)	1,686,780	3,338,833	1,441,049		
Delay/Person	9.21	18.23	7.87		
Delay/Vehicle Trip	2.53	3.46	1.79		
Average Length of Trip (miles)	8.65	7.52	7.17		
Average Length of Trip (minutes)	16.02	14.33	12.20		
All Vehicle Trips	666,388	965,533	805,927		
ZOV Trips	-	295,009	269,646		
% ZOV	-	31%	33%		

Parting Thoughts

- Models can be enhanced to capture almost (but not) all dimensions of uncertainty about CAVs
 - Add adjustments to all steps
 - Add taxi/TNC mode
 - Add special ZOV components
- They can NOT tell us what will happen
- They CAN help us understand
 - the range of possible futures
 - the relative importance of different factors
 - the robustness of policies / investments

VINCE BERNARDIN, PHD DIRECTOR

vince.bernardin@rsginc.com 812.200.2351

www.rsginc.com