Predicting Travel Time Reliability for Projects: The SHRP2 Tools

presented to

Tennessee Model Users Group

presented by

Rich Margiotta

What I'll Cover

- Definition of travel time reliability (TTR) and why it's important
- Forecasting reliability
 - » SHRP 2 products
 - » Example applications: Florida MPOs, Maryland SHA, and Knoxville TPO

TRAVEL TIME RELIABILITY DEFINED

Travel Time Reliability

- Measured by how travel time of a trip varies over time (from day-to-day) for a specific time period (e.g., peak period)
- In other words, reliability is measured as the variability of travel times
 - "How long will my trip take today compared to the same trip at the same time on any average day?"
 - » ... this implies ...
 - Travelers should have the ability to predict travel time for a trip and to arrive at destination within an "on-time window"

Why Is Reliability Important?

- Planning for unreliable travel has costs for users
 - » In the past we assumed only the average travel time for a trip was valued, ...but..
 - Studies have shown that variability/unpredictability has cost too
 - VOR ~ 80% of VOT, higher for trucks
- Can be treated cost-effectively by addressing roadway "events" through operations strategies
 - » But any capacity increase or demand reduction will also improve reliability
- Considering reliability is basically analysis of the "full year" rather than the "perfect day" – it's how facilities actually operate and what users actually experience

MEASURING RELIABILITY

Reliability in Concept

Effects of Incidents and Weather

Weekday Travel Times

5:00-6:00 P.M., on State Route 520 Eastbound, Seattle, WA

Travel Time Distribution is the Basis for Reliability Performance Measures

Number of Trips (in Thousands)

PREDICTING RELIABILITY

Reliability Prediction: SHRP2 Tools

SHRP2	Analysis Scale (in order of increasing
Project	complexity)
C11	Sketch planning; system or project level
L07	Detailed sketch planning; mainly project level
L08	Facility analysis using HCM scale of analysis
C10	Regional planning using linked travel demand and mesoscopic simulation analysis
L04	Corridor planning using linked travel demand and mesoscopic or microscopic simulation analysis

C11 Sketch Planning Tool

- Original Product
 - » Designed for project level analysis (one project at a time)
 - Used national defaults for reliability prediction curves
 - » Standalone spreadsheet
 - » Recurring (bottleneck) and incident delay only
- To be more useful, why not link to travel demand model so that the reliability of system-wide projects can be developed?
 - Can be used to produce not only the common reliability measures but the MAP-21 measures and other travel time-based measures

C11 Post-Processor: Enhancements

- Functionality
 - » Post-Processor to TDF models; uses loaded network file
- Analytics
 - » Custom reliability relationships, including arterials
 - » Library of operations improvements and their impact factors
- Maryland SHA
 - » Statewide model
 - » Allows capacity and operations projects to be considered
- Florida MPOs
 - » Safety prediction
- Knoxville TPO
 - » Delay due to weather (NOAA data for TYS) and traffic variability (Knoxville ITS data)

C11 Post-Processor: How It Works

- Traffic data gathered from loaded network file
 - » Volumes and capacities are critical; model values may need adjusting
- Users define:
 - » Corridors for tabulating results
 - » Assign improvements to corridors
- Recurring congestion uses a VDF (modified Davidson)
- Incident delay uses IDAS equations
- Improvements affect capacity, delay, or incident characteristics
- Reliability predicted from average conditions

NPMRDS-Based Relationships for TN

NPMRDS-Based Relationships for TN (cont.)

Knox County 2040 Results

Route	Mean TTI	80 th %ile TTI	95 th %ile TTI	MAP-21 % Reliable (PM)	Total Excessive Delay (PM)
Alcoa Highway	1.108	1.138	1.416	97.1%	549
I-140	1.214	1.300	1.706	93.8%	771
I-275	1.072	1.077	1.232	100.0%	235
I-40/75	1.507	1.645	2.749	51.0%	2,558
I-640/75	1.134	1.147	1.436	100.0%	270
Chapman Hwy	1.264	1.354	2.029	93.6%	554
Kingston Pike	1.400	1.595	2.465	86.8%	1,173

C11 Post-Processor: Next Steps

- Currently "not ready for prime time software" can be run for an MPO as a service
- Ideally, "user grade" software should be created
- Calibration to NPMRDS speeds
 - » Adjust capacity (as per the HCM) to match observed speeds
 - » TDF models not usually calibrated this way will it change interpretation?
- Can help with MAP-21 target setting
 - » Planning Rule states that projects in LRTP and TIP need to "show progress toward targets
 - Time periods for MAP-21 measures do not coincide with TDF model periods very well

Questions?

- Rich Margiotta
- Rmargiotta@camsys.com

MAP-21/FAST ACT MOBILITY PERFORMANCE MEASURES

Overview

- Known by many names but Rule refers to them as "System Performance Measures"
 - » MAP-21, FAST ACT, PM3 are other names you hear
- Final rule is slightly different from the proposed rule, but is still a mix of measures and targets for the measures
- Measures now based on both based on travel time vs. other forms of data
- Implementation of the Final Rule was delayed twice as new administration reviewed it
- Measures to be based on empirical data: the NPMRDS or approved "equivalent"

Proposed vs. Final Rule

Dunyana d Duda	Einel Dule			
Proposed Rule	Final Rule			
System Reliability	System Reliability			
Peak Hour Travel Time Ratio	(dropped)			
Truck Travel Time Reliability	Truck Travel Time Reliability			
Average Truck Speed	(dropped)			
Excessive Delay	Peak Hour Excessive Delay			
CMAQ On-Road Emissions	Percent Non-SOV Travel			
	Percent Change in Tailpipe CO2 Emissions (now in administrative limbo)			
Bold indicates travel time-based measures				

National Performance Management Research Data Set (NPMRDS)

- FHWA just switched contractors from HERE to a UMD/INRIX /TTI team
- First new data expected in July
- NPMRDS #1 went through February but is now unavailable
 - » Old data MAY become available through new contract
- New features
 - » Conflated to HPMS
 - "Probe Data Indicators" TBD
 - » Data based on a mix of spot speeds and path processing
 - Should help signalized highway estimates
 - » More TMCs included (links)
 - Break out small links that are internal to intersections and interchanges; these were previously aggregated onto adjacent links

Opportunities for Modeling

- NPMRDS speeds being used to calibrate simulation models can be used for TDF models and sketch planning tools as well
- Ability to predict the System Performance measures
 - » Planning Rule states that projects in TIP, STIP, and LRTP should, "to the extent possible", indicate how projects contribute to progress toward the target
 - Standalone (e.g..) HCM vs. integration with travel demand and simulation models
 - » Perhaps part of a larger Model Applications Guide
- Challenges
 - » Multiple time periods considered by the new measures beyond what users typically consider

Where the Modeling Can Help

- Forecasting activities for performance management
 - » Target setting
 - » Statistical controls in before/after studies
 - » Evaluating proposed projects, especially how they make progress toward targets
- New HCM Reliability procedures "hit the sweet spot"
 - » More rigorous than sketch planning, less data and resource intensive than simulation

