Latent Population Segments with Homogenous Residential and Work Location Choice Preferences

Mishra S., Golias M., Paleti, R., Sarker, A., and Balan, L

Presentation at TNMUG April 28, 2016

The Intermodal Freight Transportation Institute (IFTI)

Outline

- Introduction
- Overview of Latent Class (LC) Models and Transportation Applications
- Project Framework and Data
- Preliminary Results
- Next Steps

Project Overview

- One year project (Jan 2016 ~Dec 2016)
- Sponsored by TDOT
- Project Manager
 - Chin-Cheng Chen

Causation versus latent

We observe a correlation between two variables. Why?

2. Y causes X?

Latent Class Model Overview (1)

- First introduced in social science
 - To capture the effects of social factors
 - Economic development
 - Racial prejudice
 - Religious commitment
- Variable indicating underlying subgroups of individuals
 - "Latent" because factors can not be directly observed or measured

Latent Class Model Overview (2)

Use of Latent Class (1)

- Extremely popular in marketing research
 - Market segmentation
 - Market structuring

Use of Latent Class (2)

- Behavioral and health sciences
 - Identify differential treatment effects
 - By creating small subgroups based on e.g.
 - Age groups, alcohol use, household poverty, smoking behavior etc.
- Economics and Geography
 - Attitudinal measures of motivations
 - Heterogeneous preferences

Transportation Application (1)

- Personal attitudes and preferences are not observed in travel surveys
 - Greener life styles
 - Tech-savvy attitude

Commute to green lifestyle

Transportation Application (2) Quantify effect of household & person factors

- - Joint household-workplace location choices
 - Travel behavior (commute mode, activity frequency etc.)
- Latent segmentation based on
 - Socio-demographic factors (income, auto ownership, educational level)
 - Work arrangements (work flexibility, part-time status, telecommuting option, industry)
 - Typical Travel Behavior (usual commute mode, non-motorized travel)

Research Objective

- Extensive synthesis of current and past literature on
 - Methodological aspects of latent class models
 - Applications in the context of transportation and land-use modeling
- Develop Alternate Behavioral Paradigms for modeling residential and work location choices
- Perform extensive post model estimation
- Demonstrate applicability by forecasting

Methodological Framework

Work Location Model in TN: Data

Nashville Household Travel Survey data

• 5,164 households with 11,114 people

• 5,682 employed people

Data Assembly Steps

- Append Distance and Logsum information for each [Home TAZ, Sampled TAZ] zonal pair
- Append zonal employment information of the industry in which the person is employed for all the sampled alternatives
 - For a person employed in manufacturing industry, only manufacturing zonal employment must be used
- Append household and person explanatory variables to the estimation data set

Household Level Explanatory Variables

- Household Level Variables
 - Household Income
 - Housing Tenure (Own *versus* Rent)
 - Presence of Children
 - Household Auto Ownership
 - Highest Educational Attainment

Person Level Explanatory Variables

- Work Industry
- Work hours (part-time versus full-time)
- Work Flexibility
- Educational Attainment
- Gender
- Age
- License
- Student Status

Transportation Network Level Explanatory Variables

- Network Distance
 - Linear
 - Squared
 - Cubic
 - Logarithmic

Mode Choice Logsum

Explanatory Variables Mode Choice Logsum

- Work Location Choice is a long term choice
- Choices also influenced by network accessibility conditions
 - Areas with better transit connectivity and less auto congestion may be preferred
- Actual travel conditions experienced depends on mode choice (short term decision)
- Expected utility or logsum (mode choice): Location choice models explanatory variable

Mode Choice Logsum

For each zonal pair, utility of the 10 modes was computed using the following coefficients:

	Beta - Specific to Choice Alternatives									
Variable	Auto	WCR	DCR	WUR	DUR	WEB	DEB	WLB	DLB	Walk/ Bike
In-vehicle Travel Time	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	
In-vehicle Travel Time=0		-999	-999	-999	-999	-999	-999	-999	-999	
Transit Fare		-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	
Distance	-0.015									-1.5
Distance>3 miles										-999
Initial Wait Time		-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	
Access Walk Time		-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	1
Access Drive Time			-0.075		-0.075		-0.075		-0.075	
Number of Transfers		-0.03								
Transfer Wait Time		-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	
Transfer Walk Time		-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	
Egress Walk Time		-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	-0.075	

Final Estimation Dataset

• 3,635 workers

• 50 alternatives per worker

Industry	Frequency	Percentage
Agriculture	459	12.6
Manufacturing	133	3.7
Transportation	160	4.4
Retail	455	12.5
Office	2,428	66.5
Total	3,635	100

Commute Distance: Age 18 to 24 years

Commute Distance: Female and Presence of Young Child (0 to 5 years)

Commute Distance: Auto Ownership (>=4 vehicles)

Location Choice Model Structure

- Unlabeled MNL model
 - No alternate specific constants
- i → Index of origin zone (home zone)
- J → Index of destination zones (work zone alternative)
- $q \rightarrow Index of the worker$
- S → Size Variable (log of zonal employment in corresponding industry)
- LS → Logsum
- D → Distance between origin and destination zones
 - Utility can include several linear and non-linear distance effects
- X → Worker and household characteristics

$$U_{i,j,q} = S_j + \alpha \times LS_{i,j} + \sum_k D_{i,j}^k + \sum_k \beta^k D_{i,j}^k X_q$$

Work Location Choice Model

Variables	Parameter	SE	T-Stat	
Log(Zonal Employment)- (Size Variable)	1.0000 (fixed)	-		
Mode Choice Logsum	1.0000 (fixed)			
Distance	-1.5378	0.436	-3.52	
Distance * Part-Time	1.7894	0.382	4.68	
Distance*Female	1.0434	0.465	2.24	
Distance*Feamle*Presence of Child	-0.6537	0.556	-1.17	
Distance*Four or more Vehicles	2.4295	0.400	5.65	
Distance Squared	-1.1887	0.596	-1.99	

Distance Effects

Latent Choice Modeling Update

 Developed the code for estimating latent choice models

- Currently, testing different latent models with varying number of latent classes and specifications
 - Estimation is done in two stages using Expectation Maximization algorithm
 - Model must be build gradually and can be time consuming!

Advantages of Latent Class Models

- Same data requirements as traditional choice models
- Can identify population segments with significantly different location patterns
 - Improved behavioral and forecasting accuracy
- These population segments can serve as good clusters for subsequent medium and short term choice models
 - Mode choice, daily activity patterns, tours and trips

Next Steps

- Explore important sampling methods (instead of random sampling)
- Estimate Latent Class Work Location model (Nashville)
- Demonstrate improved data fit
- Identify households and workers with significant differences in location choice preferences in Nashville
- Extend modeling method for other regions in TN

Thank you for your time

Q/A?

