Incorporating Travel Time Reliability Into Planning Applications

presented to

Tennessee Model Users Group

presented by Cambridge Systematics, Inc. Rich Margiotta

December 1, 2015

What I'll Cover

- Definition of travel time reliability (TTR) and why it's important
- Measuring reliability: data and methods
- Forecasting reliability
 - » SHRP 2 products
 - » Example applications: Tampa and Knoxville MPOs

Travel Time Reliability

- Measured by how travel time of a trip varies over time (from dayto-day) for a specific time period (e.g., peak period)
- In other words, reliability is measured as the variability of travel times
 - » "How long will my trip take today compared to the same trip at the same time on any average day?"
 - » ... this implies ...
 - » Travelers should have the ability to predict travel time for a trip and to arrive at destination within an "on-time window"

Why Is Reliability Important?

- Less tolerance for unexpected delay
- Planning for unreliable travel has costs for users
 - » In the past we assumed only the average travel time for a trip was valued, ...but..
 - » Studies have shown that variability/unpredictability has cost too
 - VOR ~ 80% of VOT
- Can be treated cost-effectively by addressing roadway "events" through operations strategies
 - » But any capacity increase or demand reduction will also improve reliability

Reliability in Concept

Effects of Incidents and Weather

Weekday Travel Times 5:00-6:00 P.M., on State Route 520 Eastbound, Seattle, WA

Reliability Measures in the New HCM

Reliability	Definition
Core Measures	
Planning Time Index (PTI)	95 th percentile Travel Time Index (TTI) (95th percentile travel time
	divided by the free flow travel time)
80 th Percentile Travel	80th percentile Travel Time Index (80 th percentile travel time divided
Time Index	by the free flow travel time)
	The standard deviation of travel time pegged to free flow travel
Semi-Standard Deviation	time rather than the mean travel time (variation is measured relative
	to free flow travel time)
	Percent of trips with space mean speed less than 50 mph; 45 mph;
Failure/On-Time	and 30 mph
Measures	Reliability Rating: Percent of trips serviced at or below a threshold
	travel time index (1.33 for freeways, 2.50 for urban streets)
Supplemental Measures	
Standard Deviation	Usual statistical definition
Misony Index (Medified)	The average of the highest five percent of travel times divided by the
wisery index (woaified)	free flow travel time

The Travel Time Distribution is the Key to Understanding Reliability

Another Travel Time Distribution

Number of Trips (in Thousands)

13

Reliability Prediction: SHRP 2 Tools

SHRP 2 Project	Analysis Scale (in order of increasing complexity)			
C11	Sketch planning; system or project level			
L07	Detailed sketch planning; mainly project level			
LO8	Facility analysis using HCM scale of analysis			
C10	Regional planning using linked travel demand and mesoscopic simulation analysis			
L04	Regional planning using linked travel demand and mesoscopic or microscopic simulation analysis			

Other SHRP 2 Reliability Products

LO2: Guidelines for creating Reliability Monitoring Programs

- » Types of data needed
- » Data collection and processing
- » Graphics
- LO5: Incorporating Reliability into Planning and Programming
 - » Process oriented
 - » Main goals:
 - Reliability used as a performance measure in project evaluations, deficiency analysis
 - Operations projects considered at all phases of project development

Reliability Prediction for Tampa LRTP Update: SHRP 2 C11

- Part of a larger FDOT effort to get SHRP 2 analytic products into practice
 - » Reliability as a performance measure in alternative evaluations
 - » "Mainstream" consideration of operations projects
- Methodology doesn't require much data: sketch planning level
 - » AADT, capacity, incident characteristics
- Considers both recurring and incident delay
 - » BPR variant for recurring; IDAS model for incident
- Predicts several reliability metrics
 - » Planning Time Index used: 95th %ile TT/Ideal TT

Adapt recently developed methodologies to work with the TBRPM

- » Create a Post-Processor for model output
 - SHRP 2 Project C11 for Reliability
 - Highway Safety Manual for Safety
- Develop investment scenarios for operations and safety projects
 - » Including project costs
- Conduct trade-off analysis: cost vs. outcomes

Reliability Prediction in Tampa

18

Scenarios Studied

- Low: traffic responsive signal control only
- Medium: "Low" + intersection geometric improvements + freeway TIM
- High: "Medium" + freeway ATM (ramp metering, VSL, lane control)

Operations Impacts

		20-Year	
Analysis	Scenario	Cost	Impact Factor
Operations & Congestion Management	Low	\$295M	Arterial capacity: +7%
	Medium	\$806M	Arterial capacity: +17%
			Incident frequency: -5%
			Incident duration: -25%
	High	\$957M	Arterial capacity: +17%
			Incident frequency: -7%
			Incident duration: -25%
			Freeway capacity: +10%

Tampa Reliability Results

			Investment Scenario		
Highway Type	Mobility Measure	2040 Scenario	Low	Medium	High
Freeways	Average TTI	Base		1.580	
		With Improvements	1.580	1.418	1.308
	80 th percentile TTI	Base		1.891	
		With Improvements	1.891	1.670	1.504
	Planning Time Index	Base		2.206	
		With Improvements	2.206	1.944	1.744
	Centerline Miles Improved		0	120	120

SHRP 2 Now in Implementation Phase

- Goal is to move products into practice
- TDOT & Knoxville TPO have FHWA assistance funding
 - » Develop LO2-style monitoring system
 - MPO and state levels
 - » L05: Incorporate reliability and operations into all planning documents and analyses
 - » C11: Reliability forecasting for the LRTP and other planning activities
 - » Replace "static" HCM analysis with LO8 reliability method
 - » Target setting tool based on LO7 prediction model

C11 Post-Processor Enhancements for Knoxville

- Create "user grade" post-processor
 - » Make available for other TN MPOs
- Include demand variability; maybe weather?
- Replace BPR function for recurring with HCM methods
- Custom reliability relationships using local vehicle probe data
- Account for synergies between safety and capital expansion/operations projects
- Consider all congestion relief projects simultaneously: operations.
 Capital expansion, demand management, transit

24

Can help with MAP-21 target setting

LO8 Approach

Example L08 Output

Reliability Analysis Summary Report for Base Run					
	Facility D	escription			
Facility Length (miles)	6.0	Number of Weather Scenarios	60		
Total Number of Scenarios	602	Number of Incident Scenarios	336		
Duration of Scenario (hrs)	3	Numb. of Incident + Weather Scen.	198		
Facility F	Reliability Pe	rformance Measures			
Mean TTI	1.21	Misery Index	3.00		
50th Percentile TTI	1.05	Semi-Standard Deviation	8.00		
80th percentile TTI	1.24	Percent VMT at TTI > 1.33	14.96%		
95th Percentile TTI (PTI)	1.65	Percent VMT at TTI > 2	2.99%		
Probability Distribution Funct	Probability Distribution Function Cumulative Distribution Function				
90% 80% 70% 60% 50% 40% 20% 10% 0%		100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 10% 0%			

At zero inclusion threshold, # of scenario runs \rightarrow 1,928

At recommended threshold of $0.01\% \rightarrow 602$ (about 90 min)

Mean facility travel speed between 4-7 pm on weekdays ~ 49.7 mph

Worse 5% of time facility operates at speed < 36 mph

Unacceptable operations (TTI > 1.33) --- affect about 15% of the VMT

LO2: Why do we need a Travel Time Reliability Monitoring System (TTRMS)?

• This is really just a system for measuring congestion/mobility

- » But we need to capture the "Seven Sources"
- Can have real-time applications
 - » What is happening now vs. "typical" or "worst case"
- The value for planning is to support performance management

A TTRMS Supports the Performance Management Process

Questions?

- Rich Margiotta
- <u>Rmargiotta@camsys.com</u>

